Chapter 2 | Crevice Corrosion (2024)

Skip Nav Destination

ASTM Manuals

Supplement to Corrosion Tests and Standards: Application and Interpretation

Editor

Edward L. Hibner,

Edward L. Hibner

Editor

1

Special Metals Corporation

Search for other works by this author on:

This Site

Harvey P. Hack,

Harvey P. Hack

Section Editor

2

Northrup Grumman Corporation

Search for other works by this author on:

This Site

John R. Scully

John R. Scully

Section Editor

3

University of Virginia

Search for other works by this author on:

This Site

ISBN:

978-0-8031-7134-3

No. of Pages:

466

Publisher:

ASTM International

Publication date:

2022

  • ‹ Previous Chapter
  • Next Chapter ›

eBook Chapter

By

Mariano Iannuzzi

Mariano Iannuzzi

1

Curtin Corrosion Centre, Curtin University

, GPO Box U1987,

Perth WA 6845,

AU

Search for other works by this author on:

This Site

,

Edgar Hornus

Edgar Hornus

1

Curtin Corrosion Centre, Curtin University

, GPO Box U1987,

Perth WA 6845,

AU

Search for other works by this author on:

This Site

,

Mobin Salasi

Mobin Salasi

1

Curtin Corrosion Centre, Curtin University

, GPO Box U1987,

Perth WA 6845,

AU

Search for other works by this author on:

This Site

Page Count:

26

  • Published:

    2022

Citation

Iannuzzi, M, Hornus, E, & Salasi, M. "Chapter 2 | Crevice Corrosion." Supplement to Corrosion Tests and Standards: Application and Interpretation. Ed. Hibner, EL, Hack, HP, & Scully, JR. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2022.

Download citation file:

  • Ris (Zotero)
  • Reference Manager
  • EasyBib
  • Bookends
  • Mendeley
  • Papers
  • EndNote
  • RefWorks
  • BibTex
  • ProCite
  • Medlars

Search Dropdown Menu

Advanced Search

Crevice corrosion affects most metals and alloys and is among the most damaging forms of corrosion. Crevice geometries can be found on a wide range of structures and components, including flanges, threaded connections, and lap joints, as well as under deposits and damaged coatings. All metals and alloys that develop a passive film are prone to crevice corrosion in specific environments. Stainless steels, especially those with little to no molybdenum, some nickel-based alloys, and aluminum alloys, are particularly susceptible to crevice corrosion. Moreover, materials that are highly resistant to pitting corrosion, such as titanium and titanium-based alloys, can suffer crevice corrosion. Today, the corrosion specialist can choose from numerous accepted tests to study crevice corrosion phenomena. The different methodologies can be used to compare and rank alloys, conduct quality control, assess the effects of changes in manufacturing routes and alloy composition on crevice corrosion resistance, and determine critical temperatures and potentials and induction times. This chapter describes the various standard test methods, including immersion testing and electrochemical techniques, as well as adaptations to study crevice corrosion parameters and prevention strategies.

Keywords:

crevice corrosion, stainless steels, nickel alloys, test methods

References

1.

Standard Terminology and Acronyms Relating to Corrosion

, NACE/ASTM G193-12d (

West Conshohocken, PA

:

ASTM International

, approved December 1,

2012

),

2.

Kelly

R. G.

, “

Crevice Corrosion

,” in

ASM Handbook, Volume 13A: Corrosion: Fundamentals, Testing, and Protection

, ed.

Cramer

S. D.

and

Covino

B. S.

(

Metals Park, OH

:

ASM International

,

2003

), 242–247.

3.

Betts

A. J.

and

Boulton

L. H.

, “

Crevice Corrosion: Review of Mechanisms, Modelling, and Mitigation

,”

British Corrosion Journal

28

,

no. 4

(

1993

): 279–296.

4.

Gallagher

P.

,

Malpas

R. E.

, and

Shone

E. B.

, “

Corrosion of Stainless Steels in Natural, Transported, and Artificial Seawaters

,”

British Corrosion Journal

23

,

no. 4

(

1988

): 229–233.

5.

Schlain

D.

and

Kenahan

C. B.

, “

The Role of Crevices in Decreasing the Passivity of Titanium in Certain Solutions

,”

Corrosion

12

,

no. 8

(

1956

): 422t–426t.

6.

Standish

T. E.

,

Yari

M.

,

Shoesmith

D.W.

, and

Noel

J. J.

, “

Crevice Corrosion of Grade-2 Titanium in Saline Solutions at Different Temperatures and Oxygen Concentrations

,”

Journal of The Electrochemical Society

164

,

no. 13

(

2017

): C788–C795.

7.

Brown

B. F.

, “

Concept of the Occluded Corrosion Cell

,”

Corrosion

26

,

no. 8

(

1970

): 249–250.

8.

Laycock

N. J.

,

Stewart

J.

, and

Newman

R. C.

, “

The Initiation of Crevice Corrosion in Stainless Steels

,”

Corrosion Science

39

,

no. 10–11

(

1997

): 1791–1809.

9.

Galvele

J. R.

, “

Tafel's Law in Pitting Corrosion and Crevice Corrosion Susceptibility

,”

Corrosion Science

47

,

no. 12

(

2005

): 3053–3067.

10.

Mears

R. B.

and

Evans

U. R.

, “

Corrosion at Contact with Glass

,”

Transactions of the Faraday Society

30

(

1934

): 417–423.

11.

Kearns

J. R.

,

Johnson

M. J.

, and

Grubb

J. F.

, “

Accelerated Corrosion in Dissimilar Metal Crevices

” (paper presentation, Corrosion 1986,

NACE International

,

Houston, TX

,

1986

).

12.

Frankel

G. S.

and

Sridhar

N.

, “

Understanding Localized Corrosion

,”

Materials Today

11

,

no. 10

(

2008

): 38–44.

13.

Standard Specification for General Requirements for Flat-Rolled Stainless and Heat-Resisting Steel Plate, Sheet, and Strip

, ASTM A480/A480M-18a (

West Conshohocken, PA

:

ASTM International

, approved December 1,

2018

),

14.

Wilde

B. E.

and

Williams

E.

, “

The Use of Current/Voltage Curves for the Study of Localized Corrosion and Passivity Breakdown on Stainless Steels in chloride Media

,”

Electrochimica Acta

16

,

no. 11

(

1971

): 1971–1985.

15.

Uhlig

H. H.

, “

Pitting of Stainless Steels

,”

Transactions of AIME

140

(

1940

): 387–432.

16.

Galvele

J. R.

, “

Pitting Corrosion

,” in

Corrosion: Aqueous Processes and Passive Films

, ed.

Scully

J. C.

(

London, UK

:

Academic Press

,

1983

), 1–57.

17.

Rosenfeld

I. L

and

Danilov

I. S.

, “

Electrochemical Aspects of Pitting Corrosion

,”

Corrosion Science

7

,

no. 3

(

1967

): 129–142.

18.

Galvele

J. R.

, “

Transport Processes and the Mechanism of Pitting of Metals

,”

Journal of The Electrochemical Society

123

,

no. 4

(

1976

): 464–474.

19.

Galvele

J. R.

, “

Transport Processes in Passivity Breakdown—II. Full Hydrolysis of the Metal Ions

,”

Corrosion Science

21

,

no. 8

(

1981

): 551–579.

20.

Gravano

S. M.

and

Galvele

J. R.

, “

Transport Processes in Passivity Breakdown—III. Full Hydrolysis Plus Ion Migration Plus Buffers

,”

Corrosion Science

24

,

no. 6

(

1984

): 517–534.

21.

Oldfield

J. W.

and

Sutton

W. H.

, “

Crevice Corrosion of Stainless Steels: I. A Mathematical Model

,”

British Corrosion Journal

13

,

no. 1

(

1978

): 13–22.

22.

Oldfield

J. W.

, “

Test Techniques for Pitting and Crevice Corrosion Resistance of Stainless Steels and Nickel-Base Alloys in Chloride-Containing Environments

,”

International Materials Reviews

32

,

no. 1

(

1987

): 153–172.

23.

Carranza

R. M.

,

Rodriguez

M. A.

, and

Rebak

R. B.

, “

Effect of Fluoride Ions on Crevice Corrosion and Passive Behavior of Alloy 22 in Hot Chloride Solutions

,”

Corrosion

63

,

no. 5

(

2007

): 480–490.

24.

Oldfield

J. W.

and

Sutton

W. H.

, “

Crevice Corrosion of Stainless Steels: II. Experimental Studies

,”

British Corrosion Journal

13

,

no. 3

(

1978

): 104–111.

25.

Alkire

R.

and

Siitari

D.

, “

Initiation of Crevice Corrosion. II—Mathematical Model for Aluminum in Sodium Chloride Solutions

,”

Journal of The Electrochemical Society

129

,

no. 3

(

1982

): 488–496.

26.

Walton

J. C.

, “

Mathematical Modeling of Mass Transport and Chemical Reaction in Crevice and Pitting Corrosion

,”

Corrosion Science

30

,

nos. 8–9

(

1990

): 915–928.

27.

Keitelman

A. D.

,

Gravano

S. M.

, and

Galvele

J. R.

, “

Localized Acidification as the Cause of Passivity Breakdown of High Purity Zinc

,”

Corrosion Science

24

,

no. 6

(

1984

): 535–545.

28.

Rodriguez

M. A.

, “

Inhibition of Localized Corrosion in Chromium Containing Stainless Alloys

,”

Corrosion Reviews

30

,

nos. 1–2

(

2012

): 19–32.

29.

Newman

R. C.

,

Ajjawi

M. A.

A.

,

Ezuber

H.

, and

Turgoose

S.

, “

An Experimental Confirmation of the Pitting Potential Model of Galvele

,”

Corrosion Science

28

,

no. 5

(

1988

): 471–477.

30.

Hornus

E. C.

,

Rodriguez

M. A.

,

Carranza

R. M.

, and

Rebak

R. B.

, “

Crevice Corrosion Repassivation of Ni-Cr-Mo Alloys by Cooling

,”

Corrosion

75

,

no. 6

(

2019

): 604–615.

31.

Srinivasan

J.

and

Kelly

R. G.

, “

On a Recent Quantitative Framework Examining the Critical Factors for Localized Corrosion and Its Impact on the Galvele Pit Stability Criterion

,”

Corrosion

73

,

no. 6

(

2017

): 613–633.

32.

Kappes

M. A.

,

Ortiz

M. C.

,

Iannuzzi

M.

, and

Carranza

R. M.

, “

Use of the Critical Acidification Model to Estimate Critical Localized Corrosion Potentials of Duplex Stainless Steels

,”

Corrosion

73

,

no. 1

(

2017

): 31–40.

33.

Hornus

E. C.

,

Rodriguez

M. A.

,

Carranza

R. M.

, and

Rebak

R. B.

, “

Comparative Study of the Crevice Corrosion Resistance of UNS S30400 and UNS S31600 Stainless Steels in the Context of Galvele's Model

,”

Corrosion

73

,

no. 1

(

2016

): 41–52.

34.

Galvele

J. R.

,

Lumsden

J. B.

, and

Staehle

R. W.

, “

Effect of Molybdenum on the Pitting Potential of High Purity 18% Cr Ferritic Stainless Steels

,”

Journal of The Electrochemical Society

125

,

no. 8

(

1978

): 1204.

35.

Bocher

F.

,

Huang

R.

, and

Scully

J. R.

, “

Prediction of Critical Crevice Potentials for Ni-Cr-Mo Alloys in Simulated Crevice Solutions as a Function of Molybdenum Content

,”

Corrosion

66

,

no. 5

(

2010

): 055002–055002–15.

36.

Martínez

P. A.

,

Rodriguez

M. A.

,

Hornus

E. C.

,

Carranza

R. M.

, and

Rebak

R. B.

, “

Crevice Corrosion Resistance of Super-Austenitic and Super-Duplex Stainless Steels in Chloride Solutions

” (paper presentation, Corrosion 2015,

NACE International

,

Dallas, TX

, March 15–19,

2015

).

37.

G. C.Wood, “

The Role of Flaws in Breakdown of Passivity Leading to Pitting of Aluminum and Crevice Corrosion of Stainless Steel

,” in

Passivity of Metals

, ed.

Frankenthal

R. P.

and

Sutton

W. H.

(

Princeton, NJ

:

Electrochemical Society

,

1978

), 973–988.

38.

Stockert

L.

, and

Boehni

H.

, “

Metastable Pitting Processes and Crevice Corrosion on Stainless Steels

,” in

Advances in Localized Corrosion

, NACE-9, ed.

Isaacs

H. S.

(

Houston, TX

:

NACE International

,

1987

), 467–473.

39.

Pickering

H. W.

, “

The Significance of the Local Electrode Potential within Pits, Crevices and Cracks

,”

Corrosion Science

29

,

no. 2

(

1989

): 325–341.

40.

Brossia

C. S.

and

Cragnolino

G. A.

, “

Effect of Environmental Variables on Localized Corrosion of Carbon Steel

,”

Corrosion

56

,

no. 5

(

2000

): 505–514.

41.

Suzuki

T.

,

Yamabe

M.

, and

Kitamura

Y.

, “

Composition of Anolyte within Pit Anode of Austenitic Stainless-Steels in Chloride Solution

,”

Corrosion

29

,

no. 1

(

1973

): 18–22.

42.

Mankowski

J.

and

Szklarskasmialowska

Z.

, “

Studies on Accumulation of Chloride-Ions in Pits Growing during Anodic Polarization

,”

Corrosion Science

15

,

no. 8

(

1975

): 493–501.

43.

Li

T.

,

Scully

J. R.

, and

Frankel

G. S.

, “

Localized Corrosion: Passive Film Breakdown vs. Pit Growth Stability: Part IV. The Role of Salt Film in Pit Growth: A Mathematical Framework

,”

Journal of The Electrochemical Society

166

,

no. 6

(

2019

): C115–C124.

44.

Li

T.

,

Scully

J. R.

, and

Frankel

G. S.

, “

Localized Corrosion: Passive Film Breakdown vs. Pit Growth Stability: Part III. A Unifying Set of Principal Parameters and Criteria for Pit Stabilization and Salt Film Formation

,”

Journal of The Electrochemical Society

165

,

no. 11

(

2018

): C762–C770.

45.

Li

T.

,

Scully

J. R.

, and

Frankel

G. S.

, “

Localized Corrosion: Passive Film Breakdown vs Pit Growth Stability: Part II. A Model for Critical Pitting Temperature

,”

Journal of the Electrochemical Society

165

,

no. 9

(

2018

): C484–C491.

46.

Frankel

G. S.

,

Li

T.

, and

Scully

J. R.

, “

Perspective—Localized Corrosion: Passive Film Breakdown vs. Pit Growth Stability

,”

Journal of the Electrochemical Society

164

,

no. 4

(

2017

): C180–C181.

47.

Brigham

R. J.

, “

Temperature as a Crevice Corrosion Criterion

,”

Corrosion

30

,

no. 11

(

1974

): 396–398.

48.

Brigham

R. J.

and

Tozer

E. W.

, “

Temperature as a Pitting Criterion

,”

Corrosion

29

,

no. 1

(

1972

): 33–36.

49.

Kolts

J.

and

Sridhar

N.

, “

Temperature Effects in Localized Corrosion

,” in

Corrosion of Nickel-Base Alloys

, ed.

Scarberry

R. C.

(

Metals Park, OH

:

ASM International

,

1984

): 191–198.

50.

Qvarfort

R.

, “

Critical Pitting Temperature-Measurements of Stainless-Steels with an Improved Electrochemical Method

,”

Corrosion Science

29

,

no. 8

(

1989

): 987–993.

51.

Garner

A.

, “

Materials Selection for Bleached Pulp Washers

,”

Avesta Stainless Bulletin

1

,

no. 12

(

1982

): 3–18.

52.

Pickering

H. W.

, “

The Role of Electrode Potential Distribution in Corrosion Processes

,”

Materials Science and Engineering: A

198

,

nos. 1–2

(

1995

): 213–223.

53.

Frankel

G.

,

Thornton

G.

,

Street

S.

,

Rayment

T.

,

Williams

D.

,

Cook

A.

,

Davenport

A.

, et al, “

Localised Corrosion: General Discussion

,”

Faraday Discussions

180

(

2015

): 381–414.

54.

Frankel

G. S.

, “

Pitting Corrosion of Metals: A Review of the Critical Factors

,”

Journal of the Electrochemical Society

145

,

no. 6

(

1998

): 2186–2198.

55.

Newman

R. C.

, “

2001 W. R. Whitney Award Lecture: Understanding the Corrosion of Stainless Steel

,”

Corrosion

57

,

no. 12

(

2001

): 1030–1041.

56.

Ijsseling

F. P.

, “

Electrochemical Methods in Crevice Corrosion Testing: Report Prepared for the European Federation of Corrosion Working Party ‘Physico-Chemical Testing Methods of Corrosion: Fundamentals and Applications,’

British Corrosion Journal

15

,

no. 2

(

1980

): 51–69.

57.

Kain

R. M.

, “

Electrochemical Measurement of the Crevice Corrosion Propagation Resistance of Stainless Steels: Effect of Environmental Variables and Alloy Content

,”

Materials Performance

23

,

no. 2

(

1984

): 24–30.

58.

Kain

R. M.

, “

Crevice Corrosion Testing in Natural Seawater. Significance and Use of Multiple Crevice Assemblies

,”

Journal of Testing and Evaluation

18

,

no. 5

(

1990

): 309–318.

59.

Kruger

J.

and

Rhyne

K.

, “

Current Understanding of Pitting and Crevice Corrosion and Its Application to Test Methods for Determining the Corrosion Susceptibility of Nuclear Waste Metallic Containers

,”

Nuclear and Chemical Waste Management

3

,

no. 4

(

1982

): 205–227.

60.

Anderson

D. B.

, “

Statistical Aspects of Crevice Corrosion in Seawater

,” in

Galvanic and Pitting Corrosion—Field and Laboratory Studies

, ed.

Baboian

R.

,

France

W.

,

Rowe

L.

, and

Rynewicz

J.

(

West Conshohocken, PA

:

ASTM International

,

1976

), 231–242.

61.

Kain

R. M.

, “

Seawater Testing to Assess the Crevice Corrosion Resistance of Stainless Steel and Related Alloys

,” in

Proceedings of the 12th International Corrosion Congress

, Vol.

3B

(

Houston, TX

:

NACE International

,

1993

), 1889–1990.

62.

Kain

R. M.

, “

Evaluating Crevice Corrosion

,” in

ASM Handbook, Vol. 13A: Corrosion: Fundamentals, Testing, and Protection

, ed.

Cramer

S. D.

and

Covino

,

B. S.

 Jr.
(

Metals Park, OH

:

ASM International

,

2003

), 549–561.

63.

Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution

, ASTM G48-11 (

2015

) (

West Conshohocken, PA

:

ASTM International

, approved November 1,

2015

),

64.

Giordano

C. M.

,

Ortiz

M. R.

,

Rodriguez

M. A.

, and

Rebak

R. B.

, “

Crevice Corrosion Testing Methods for Measuring Repassivation Potential of Alloy 22

,”

Corrosion Engineering, Science and Technology

46

,

no. 2

(

2013

): 129–133.

65.

Akashi

M.

,

Nakayama

G.

, and

Fukuda

T.

, “

Initiation Criteria for Crevice Corrosion of Titanium Alloys Used for HLW Disposal Overpack

,” NACE 98185 (paper presentation, Corrosion 1998,

San Diego, CA

, March 22–27,

1998

).

66.

Shan

X.

and

Payer

J. H.

, “

Effect of Polymer and Ceramic Crevice Formers on the Crevice Corrosion of Ni-Cr-Mo Alloy 22

,”

Corrosion

66

,

no. 10

(

2010

): 105005–105005-14.

67.

Espelid

B.

, “

Objectives and Background

,” in

EFC-60: Methodology of Crevice Corrosion Testing for Stainless Steels in Natural and Treated Seawaters

, ed.

Kivisäkk

U.

,

Espelid

B.

, and

Féron

D.

(

Wakefield, UK

:

Maney Publishing

,

2010

), 8–11.

68.

Kivisäkk

U.

,

Espelid

B.

, and

Féron

D.

, ed.,

EFC-60: Methodology of Crevice Corrosion Testing for Stainless Steels in Natural and Treated Seawaters

(

Wakefield, UK

:

Maney Publishing

,

2010

).

69.

Espelid

B.

, “

Crevice Formers for Specimens of Plate Material

,” in

EFC-60: Methodology of Crevice Corrosion Testing For Stainless Steels in Natural and Treated Seawaters

, ed.

Kivisäkk

U.

,

Espelid

B.

, and

Féron

D.

(

Wakefield, UK

:

Maney Publishing

,

2010

), 17–20.

70.

Haugan

E. B.

,

Næss

M.

,

Rodriguez

C. T.

,

Johnsen

R.

, and

Iannuzzi

M.

, “

Effect of Tungsten on the Pitting and Crevice Corrosion Resistance of Type 25Cr Super Duplex Stainless Steels

,”

Corrosion

73

,

no. 1

(

2017

): 53–67.

71.

Kivisäkk

U. H.

, “

Relation of Room Temperature Creep and Microhardness to Microstructure and HISC

,”

Materials Science and Engineering: A

527

,

nos. 29–30

(

2010

): 7684–7688.

72.

He

X.

,

Noël

J. J.

, and

Shoesmith

D. W.

, “

Temperature Dependence of Crevice Corrosion Initiation on Titanium Grade-2

,”

Journal of the Electrochemical Society

149

,

no. 9

(

2002

): B440–B449.

73.

Jakupi

P.

,

Noël

J. J.

, and

Shoesmith

D. W.

, “

Crevice Corrosion Initiation and Propagation on Alloy-22 under Galvanically-Coupled and Galvanostatic Conditions

,”

Corrosion Science

53

,

no. 10

(

2011

): 3122–3130.

74.

He

X.

,

Noël

J. J.

, and

Shoesmith

D. W.

, “

Crevice Corrosion Damage Function for Grade-2 Titanium of Iron Content 0.078 wt% at 95°C

,”

Corrosion Science

47

,

no. 5

(

2005

): 1177–1195.

75.

Mathiesen

T.

and

Anderson

A.

, “

Challenges in Pre-Qualification Corrosion Testing of CRAs Based on ASTM G48

” (paper presentation, Corrosion 2014,

San Antonio, TX

, March 9–13,

2014

).

76.

Garner

A.

, “

Crevice Corrosion of Stainless-Steels in Sea-Water-Correlation of Field Data with Laboratory Ferric-Chloride Tests

,”

Corrosion

37

,

no. 3

(

1981

): 178–184.

77.

Tsujikawa

S.

,

Kudo

K.

, and

Ogawa

H.

, “

A New Test for Predicting Pitting Corrosion Resistance of CRAs in Sour Environments

” (paper presentation, Corrosion 1988,

St. Louis, MO

,

1988

).

78.

Wensley

D. A.

,

Reid

R. C.

, and

Dykstra

H.

, “

Corrosion of Nickel-Based Alloys in Chlorine Dioxide Washer Service

” (paper presentation, Corrosion 1990,

Houston, TX

,

1990

).

79.

DeForce

B. S.

, “

Comments on ASTM G48: Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution

” (paper presentation, Corrosion 2016,

NACE International

,

Vancouver, British Columbia, Canada

, March 6–10,

2016

).

80.

Skar

J. I.

and

Olsen

S.

, “

A Review of Materials Application Limits in NORSOK M-001 and ISO 21457

,”

Corrosion

73

,

no. 6

(

2017

): 655–665.

81.

Postlethwaite

J.

, “

Electrochemical Tests for Pitting and Crevice Corrosion Susceptibility

,”

Canadian Metallurgical Quarterly

22

,

no. 1

(

1983

): 133–141.

82.

Streicher

M. A.

, “

Development of Pitting Resistant Fe-Cr-Mo Alloys

,”

Corrosion

30

,

no. 3

(

1974

): 77–91.

83.

Lau

P.

and

Bernhardsson

J.

, “

Electrochemical Techniques for the Study of Pitting and Crevice Corrosion Resistance of Stainless Steels

,” in

Electrochemical Techniques for Corrosion Engineering

, ed.

Baboian

R.

(

Houston, TX

:

NACE International

,

1977

), 281–286.

84.

Ortiz

M. Rincón

,

Rodriguez

M. A.

,

Carranza

R. M.

, and

Rebak

R. B.

, “

Determination of the Crevice Corrosion Stabilization and Repassivation Potentials of a Corrosion-Resistant Alloy

,”

Corrosion

66

,

no. 10

(

2010

): 105002-1–12.

85.

Garner

A.

, “

Thiosulfate Corrosion in Paper-Machine White Water

,”

Corrosion

41

,

no. 10

(

1985

): 587–591.

86.

Renner

M.

,

Heubner

U.

,

Rockel

M. B.

, and

Wallis

D.-I.

E.

, “

Temperature as a Pitting and Crevice Corrosion Criterion in the FeCI3 Test

,”

Werkstoffe und Korrosion

37

,

no. 1

(

1986

): 183–190.

87.

Malik

A. U.

,

Siddiqi

N. A.

,

Ahmad

S.

, and

Andijani

I. N.

, “

The Effect of Dominant Alloy Additions on the Corrosion Behavior of Some Conventional and High-Alloy Stainless-Steels in Seawater

,”

Corrosion Science

37

,

no. 10

(

1995

): 1521–1535.

88.

Lorentz

K.

and

Medawar

G.

, “

Über das Korrosionsverhalten austenitischer Chrom-Nickel-(Molybd än-) Stähle mit und ohne Stickstoffzusatz unter besonderer Berücksichtigung ihrer Beanspruchbarkeit in Chloridhaltigen Lösungen

,”

Tyssenforschung

1

,

no. 3

(

1969

): 97–108.

89.

Jargelius-Pettersson

R. F.

A.

, “

Application of the Pitting Resistance Equivalent Concept to Some Highly Alloyed Austenitic Stainless Steels

,”

Corrosion

54

,

no. 2

(

1998

): 162–168.

90.

Materials Selection

, NORSOK M-001 (

Lysaker, Norway

:

Standards Norway

,

2014

).

91.

Petroleum, Petrochemical and Natural Gas Industries—Materials Selection and Corrosion Control for Oil and Gas Production Systems

, ISO 21457:2010 (

Geneva, Switzerland

:

International Organization for Standardization

,

2010

).

92.

Klapper

H. S.

,

Zadorozne

N. S.

, and

Rebak

R. B.

, “

Localized Corrosion Characteristics of Nickel Alloys: A Review

,”

Acta Metallurgica Sinica (English Letters)

30

,

no. 4

(

2017

): 296–305.

93.

Brigham

R. J.

, “

Pitting and Crevice Corrosion Resistance of 18% Cr Stainless Steels

,”

Materials Performance

13

,

no. 11

(

1974

): 29–31.

94.

Qvarfort, R.

R.

, “

New Electrochemical Cell for Pitting Corrosion Testing

,”

Corrosion Science

28

,

no. 2

(

1988

): 135–140.

95.

Dean

S. W.

,

Research Report on Interlaboratory Test Program Results for ASTM G48 Standard Test Method for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of the Ferric Chloride Solution: Methods E and F

(

West Conshohocken, PA

:

ASTM International

,

2002

).

96.

Standard Practice for the Preparation of Substitute Ocean Water

, ASTM D1141-98 (

2013

) (

West Conshohocken, PA

:

ASTM International

, approved January 1,

2013

),

97.

Salvago

G.

and

Magagnin

L.

, “

Biofilm Effect on the Cathodic and Anodic Processes on Stainless Steel in Seawater Near the Corrosion Potential: Part 1—Corrosion Potential

,”

Corrosion

57

,

no. 8

(

2001

): 680–692.

98.

Salvago

G.

and

Magagnin

L.

, “

Biofilm Effect on the Cathodic and Anodic Processes on Stainless Steel in Seawater Near the Corrosion Potential—Part 2: Oxygen Reduction on Passive Metal

,”

Corrosion

57

,

no. 9

(

2001

): 759–767.

99.

Machuca

L. L.

,

Bailey

S. I.

, and

Gubner

R.

, “

Systematic Study of the Corrosion Properties of Selected High-Resistance Alloys in Natural Seawater

,”

Corrosion Science

64

,

no. 1

(

2012

): 8–16.

100.

Steinsmo

U.

,

Rogne

T.

, and

Drugli

J.

, “

Aspects of Testing and Selecting Stainless Steels for Seawater Applications

,”

Corrosion

53

,

no. 12

(

1997

): 955–964.

101.

Steinsmo

U.

,

Rogne

T.

,

Drugli

J. M.

, and

Gartland

P. O.

, “

Critical Crevice Temperature for High-Alloyed Stainless Steels in Chlorinated Seawater Applications

,”

Corrosion

53

,

no. 1

(

1997

): 26–32.

102.

Féron

D.

,

l'Hostis

V.

, and

Roy

M.

, “

Formulation of New Synthetic Seawater for Aerobic Environment

,” in

EFC-60: Methodology of Crevice Corrosion Testing for Stainless Steels in Natural and Treated Seawaters

, ed.

Kivisäkk

U.

,

Espelid

B.

, and

Féron

D.

(

Wakefield, UK

:

Maney Publishing

,

2010

), 30–43.

103.

Kivisäkk

U.

,

Espelid

B.

, and

Féron

D.

, ed., “

ISO Proposal for Synthetic Biochemical Seawater

,” in

EFC-60: Methodology of Crevice Corrosion Testing for Stainless Steels in Natural and Treated Seawaters

(

Wakefield, UK

:

Maney Publishing

,

2010

), 105–109.

104.

Dunn

D. S.

,

Cragnolino

G. A.

, and

Sridhar

N.

, “

An Electrochemical Approach to Predicting Long-Term Localized Corrosion of Corrosion-Resistant High-Level Waste Container Materials

,”

Corrosion

56

,

no. 1

(

2000

): 90–104.

105.

Torres

C.

,

Johnson

R.

,

Østvold

H.

,

Bernås

M.

, and

Iannuzzi

M.

, “

Effect of W on Phase Transformation Kinetics and its Correlation with Localized Corrosion Resistance for UNS S39274

” (paper presentation, Corrosion 2019,

NACE International

,

Houston, TX

, March 24–28,

2019

).

106.

Standard Test Methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic/Ferritic Stainless Steels

, ASTM A923-14 (

West Conshohocken, PA

:

ASTM International

, approved March 1,

2014

),

107.

Iannuzzi

M.

,

Qvale

A. H.

, and

Fjeldly

A.

,

Rapid Non-Destructive Evaluation of the Degree of Sensitization in Stainless Steels and Nickel Based Alloys

(

West Conshohocken, PA

:

ASTM International

,

2019

).

108.

Lee

T.

, “

A Method for Quantifying the Initiation and Propagation Stages of Crevice Corrosion

,” in

Electrochemical Corrosion Testing

, ed.

Mansfeld

F.

and

Bertocci

U.

(

West Conshohocken, PA

:

ASTM International

,

1981

), 43–68.

109.

Iannuzzi

M.

,

Mendez

C.

,

Avila-Gray

L.

,

Maio

G.

, and

Rincon

H.

, “

Determination of the Critical Pitting Temperature of Martensitic and Supermartensitic Stainless Steels in Simulated Sour Environments Using Electrochemical Noise Analysis

,”

Corrosion

66

,

no. 4

(

2010

): 411–418.

110.

Kain

R. M.

and

Lee

T. S.

, “

Recent Developments in Test Methods for Investigating Crevice Corrosion

,” in

Laboratory Corrosion Tests and Standards

, ed.

Haynes

G.

and

Baboian

R.

(

West Conshohocken, PA

:

ASTM International

,

1985

), 299–323.

111.

Lillard

R. S.

and

Scully

J. R.

, “

Modeling of the Factors Contributing to the Initiation and Propagation of the Crevice Corrosion of Alloy 625

,”

Journal of The Electrochemical Society

141

,

no. 11

(

1994

): 3006–3015.

112.

Zhang

H.-J.

and

Dexter

S. C.

, “

Effect of Biofilms on Crevice Corrosion of Stainless Steels in Coastal Seawater

,”

Corrosion

51

,

no. 1

(

1995

): 56–66.

113.

Martin

F. J.

,

Lucas

K. E.

, and

Hogan

E. A.

, “

Experimental Procedure for Crevice Corrosion Studies of Ni–Cr–Mo Alloys in Natural Seawater

,”

Review of Scientific Instruments

73

,

no. 3

(

2002

): 1273–1276.

114.

Standard Guide for Conducting and Evaluating Galvanic Corrosion Tests in Electrolytes

, ASTM G71-81 (

2019

) (

West Conshohocken, PA

:

ASTM International

, approved May 1,

2019

),

115.

Salinas-Bravo

V. M.

and

Newman

R. C.

, “

An Alternative Method to Determine Critical Pitting Temperature of Stainless Steels in Ferric Chloride Solution

,”

Corrosion Science

36

,

no. 1

(

1994

): 67–77.

116.

Garfias-Mesias

L. F.

and

Sykes

J. M.

, “

Effect of Copper on Active Dissolution and Pitting Corrosion of 25% Cr Duplex Stainless Steels

,”

Corrosion

54

,

no. 1

(

1998

): 40–47.

117.

Garfias-Mesias

L. F.

and

Sykes

J. M.

, “

Metastable Pitting in 25 Cr Duplex Stainless Steel

,”

Corrosion Science

41

,

no. 5

(

1999

): 959–987.

118.

Garfias-Mesias

L. F.

,

Sykes

J. M.

, and

Tuck

C. D.

S.

, “

The Effect of Phase Compositions on the Pitting Corrosion of 25 Cr Duplex Stainless Steel in Chloride Solutions

,”

Corrosion Science

38

,

no. 8

(

1996

): 1319–1330.

119.

Tsaprailis

T.

,

Kovacs

,

W.

 III
,

Tuggle

J.

, and

Garfias-Mesias

L. F.

, “

Corrosion Resistance of Stainless Steels Exposed to Aggressive Environments with Particles and Water

” (paper presentation, Corrosion 2009,

NACE International

,

Atlanta, GA

, March 22–26,

2009

).

120.

Cottis

R. A.

, “

Interpretation of Electrochemical Noise Data

,”

Corrosion

57

,

no. 3

(

2001

): 265–285.

121.

Standard Guide for Electrochemical Noise Measurement

, ASTM G199-09 (2020)e1 (

West Conshohocken, PA

:

ASTM International

, approved November 1,

2020

),

122.

Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements

, ASTM G5-94(2011)e1, (

West Conshohocken, PA

:

ASTM International

, approved November 15,

2011

),

123.

Wilde

B. E.

, “

A Critical Appraisal of Some Popular Laboratory Electrochemical Tests for Predicting the Localized Corrosion Resistance of Stainless Alloys in Sea Water

,”

Corrosion

28

,

no. 8

(

1972

): 283–291.

124.

Wilde

B. E.

, “

Adaptation of Linear Polarization Techniques for In-Situ Corrosion Measurements in Water Cooled Nuclear Reactor Environments

,”

Corrosion

23

,

no. 12

(

1967

): 379–384.

125.

Sridhar

N.

and

Cragnolino

G. A.

, “

Applicability of Repassivation Potential for Long-Term Prediction of Localized Corrosion of Alloy 825 and Type 316L Stainless Steel

,”

Corrosion

49

,

no. 11

(

1993

): 885–894.

126.

Park

J.-J.

,

Pyun

S.-I.

,

Lee

W.-J.

, and

Kim

H.-P.

, “

Effect of Bicarbonate Ion Additives on Pitting Corrosion of Type 316L Stainless Steel in Aqueous 0.5 M Sodium Chloride Solution

,”

Corrosion

55

,

no. 4

(

1999

): 380–387.

127.

Aoyama

T.

,

Sugawara

Y.

,

Muto

I.

, and

Hara

N.

, “

In Situ Monitoring of Crevice Corrosion Morphology of Type 316L Stainless Steel and Repassivation Behavior Induced by Sulfate Ions

,”

Corrosion Science

127

(

2017

): 131–140.

128.

Burstein

G. T.

and

Moloney

J. J.

, “

Cyclic Thermammetry

,”

Electrochemistry Communications

6

,

no. 10

(

2004

): 1037–1041.

129.

Clerc

C. O.

,

Jedwab

M. R.

,

Mayer

D. W.

,

Thompson

P. J.

, and

Stinson

J. S.

, “

Assessment of Wrought ASTM F1058 Cobalt Alloy Properties for Permanent Surgical Implants

,”

Journal Biomedical Material Research

38

,

no. 3

(

1997

): 229–234.

130.

Rondelli

G.

,

Vicentini

B.

, and

Cigada

A.

, “

Localised Corrosion Tests on Austenitic Stainless Steels for Biomedical Applications

,”

British Corrosion Journal

32

,

no. 3

(

1997

): 193–196.

131.

Rondelli

G.

and

Vicentini

B.

, “

Localized Corrosion Behaviour in Simulated Human Body Fluids of Commercial Ni-Ti Orthodontic Wires

,”

Biomaterials

20

,

no. 8

(

1999

): 785–792.

132.

Tsujikawa

S.

, “

Critical Depth for Initiation of Growing Crevice Corrosion

,”

Critical Factors in Localized Corrosion

, ed.

Frankel

G. S.

and

Newman

R.

(

Pennington, NJ

:

The Electrochemical Society

,

1992

), 378–388.

133.

Tsujikawa

S.

and

Okayama

S.

, “

Repassivation Method to Determine Critical Conditions in Terms of Electrode Potential, Temperature and NaCl Concentration to Predict Crevice Corrosion Resistance of Stainless Steels

,”

Corrosion Science

31

,

no. 1

(

1990

): 441–446.

134.

Standard Test Method for Determining the Crevice Repassivation Potential of Corrosion-Resistant Alloys Using a Potentiodynamic-Galvanostatic-Potentiostatic Technique

, ASTM G192-08 (

2014

) (

West Conshohocken, PA

:

ASTM International

, approved November 1,

2014

),

135.

Tsujikawa

S.

and

Hisamatsu

Y.

, “

On the Repassivation Potential for Crevice Corrosion

,”

Corrosion Engineering

29

,

no. 1

(

1980

): 37–40.

136.

Evans

K. J.

,

Yilmaz

A.

,

Day

S. D.

,

Wong

L. L.

,

Estill

J. C.

, and

Rebak

R. B.

, “

Using Electrochemical Methods to Determine Alloy 22's Crevice Corrosion Repassivation Potential

,”

Journal of the Minerals, Metals, and Materials Society

57

(

2005

): 56–61.

137.

Mishra

A. K.

and

Frankel

G. S.

, “

Crevice Corrosion Repassivation of Alloy 22 in Aggressive Environments

,”

Corrosion

64

,

no. 11

(

2008

): 836–844.

138.

Evans

K.

,

Chawla

S.

,

Sherer

K. M.

,

Gerst

J.

,

Beavers

J. A.

,

Sridhar

N.

, and

Boomer

K. D.

, “

The Use of ASTM G192 (Tsujikawa-Hisamatsu Electrochemical Method) to Evaluate the Susceptibility of Hanford Tank Steels to Pitting Corrosion

” (paper presentation, Corrosion 2016,

NACE International

,

Vancouver, British Columbia, Canada

, March 6–10,

2016

).

139.

Rodríguez

M. A.

,

Carranza

R. M.

, and

Rebak

R. B.

, “

Effect of Potential on Crevice Corrosion Kinetics of Alloy 22

,”

Corrosion

66

,

no. 1

(

2010

): 015007-015007–1-14.

140.

Mishra

A. K.

and

Shoesmith

D. W.

, “

Effect of Alloying Elements on Crevice Corrosion Inhibition of Nickel-Chromium-Molybdenum-Tungsten Alloys under Aggressive Conditions: An Electrochemical Study

,”

Corrosion

70

,

no. 7

(

2014

): 721–730.

141.

Hornus

E. C.

,

Giordana

C. M.

,

Rodriguez

M. A.

,

Carranza

R. M.

, and

Rebak

R. B.

, “

Effect of Temperature on the Crevice Corrosion of Nickel Alloys Containing Chromium and Molybdenum

,”

Journal of The Electrochemical Society

162

,

no. 3

(

2014

): C105–C113.

142.

Rincón-Ortíz

M.

,

Rodríguez

M. A.

,

Carranza

R. M.

, and

Rebak

R. B.

, “

Determination of the Crevice Corrosion Stabilization and Repassivation Potentials of a Corrosion-Resistant Alloy

,”

Corrosion

66

,

no. 10

(

2010

): 105002-105002–1-12.

143.

Okayama

S.

,

Tsujikawa

S.

, and

Kikuchi

K.

, “

The Effect of Alloying Elements on Depassivation pH for Stainless Steels

,”

Corrosion Engineering (Jpn.)

36

,

no. 11

(

1987

): 702–709.

This content is only available via PDF.

You do not currently have access to this chapter.

Sign In

Sign In Or Register For Account

Sign in via your Institution

Email alerts

New eBook Alert

Close Modal

Related Chapters

Orthopedic Implant Retrieval and Analysis Study

Corrosion and Degradation of Implant Materials

Localized Corrosion Susceptibility of Work-Hardened Stainless Steels in a Physiological Saline Solution

Corrosion and Degradation of Implant Materials

Nuclear Components Operating in the Creep Regime

Analysis of ASME Boiler, Pressure Vessel, and Nuclear Components in the Creep Range

Effect of Heat Treatment on Liquid Metal-Induced Cracking of Austenitic Alloys

Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications

Related Articles

Single Entry Tunneler (SET) for Hemodialysis Graft Procedures

J. Med. Devices (June,2011)

Ultrasonic Cavitation Peening of Stainless Steel and Nickel Alloy

J. Manuf. Sci. Eng (February,2014)

Condenser Tube Materials for Seawater Service

J. Eng. Power (October,1966)

Related Proceedings Papers

Multi-Objective Optimization of a Bi-Metal High Temperature Recuperator for Application in Concentrating Solar Power

ES2022

Characterization of Materials Fabricated by Additive Manufacturing Method Using Line Focused Ultrasonic Transducer

IMECE2016

Ultrasonic Cavitation Peening of Stainless Steel and Nickel Alloy

MSEC2013

Chapter 2 | Crevice Corrosion (2024)

References

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Sen. Emmett Berge

Last Updated:

Views: 6145

Rating: 5 / 5 (60 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Sen. Emmett Berge

Birthday: 1993-06-17

Address: 787 Elvis Divide, Port Brice, OH 24507-6802

Phone: +9779049645255

Job: Senior Healthcare Specialist

Hobby: Cycling, Model building, Kitesurfing, Origami, Lapidary, Dance, Basketball

Introduction: My name is Sen. Emmett Berge, I am a funny, vast, charming, courageous, enthusiastic, jolly, famous person who loves writing and wants to share my knowledge and understanding with you.