Skip Nav Destination
ASTM Manuals
Supplement to Corrosion Tests and Standards: Application and Interpretation
Editor
Edward L. Hibner,
Edward L. Hibner
Editor
1
Special Metals Corporation
Search for other works by this author on:
This Site
Harvey P. Hack,
Harvey P. Hack
Section Editor
2
Northrup Grumman Corporation
Search for other works by this author on:
This Site
John R. Scully
John R. Scully
Section Editor
3
University of Virginia
Search for other works by this author on:
This Site
ISBN:
978-0-8031-7134-3
No. of Pages:
466
Publisher:
ASTM International
Publication date:
2022
- ‹ Previous Chapter
- Next Chapter ›
eBook Chapter
By
Mariano Iannuzzi
Mariano Iannuzzi
1
Curtin Corrosion Centre, Curtin University
, GPO Box U1987,
Perth WA 6845,
AU
Search for other works by this author on:
This Site
,
Edgar Hornus
Edgar Hornus
1
Curtin Corrosion Centre, Curtin University
, GPO Box U1987,
Perth WA 6845,
AU
Search for other works by this author on:
This Site
,
Mobin Salasi
Mobin Salasi
1
Curtin Corrosion Centre, Curtin University
, GPO Box U1987,
Perth WA 6845,
AU
Search for other works by this author on:
This Site
Page Count:
26
-
Published:
2022
Cite Icon Cite
- Search Site
Citation
Iannuzzi, M, Hornus, E, & Salasi, M. "Chapter 2 | Crevice Corrosion." Supplement to Corrosion Tests and Standards: Application and Interpretation. Ed. Hibner, EL, Hack, HP, & Scully, JR.
Download citation file:
- Ris (Zotero)
- Reference Manager
- EasyBib
- Bookends
- Mendeley
- Papers
- EndNote
- RefWorks
- BibTex
- ProCite
- Medlars
Search Dropdown Menu
Advanced Search
Crevice corrosion affects most metals and alloys and is among the most damaging forms of corrosion. Crevice geometries can be found on a wide range of structures and components, including flanges, threaded connections, and lap joints, as well as under deposits and damaged coatings. All metals and alloys that develop a passive film are prone to crevice corrosion in specific environments. Stainless steels, especially those with little to no molybdenum, some nickel-based alloys, and aluminum alloys, are particularly susceptible to crevice corrosion. Moreover, materials that are highly resistant to pitting corrosion, such as titanium and titanium-based alloys, can suffer crevice corrosion. Today, the corrosion specialist can choose from numerous accepted tests to study crevice corrosion phenomena. The different methodologies can be used to compare and rank alloys, conduct quality control, assess the effects of changes in manufacturing routes and alloy composition on crevice corrosion resistance, and determine critical temperatures and potentials and induction times. This chapter describes the various standard test methods, including immersion testing and electrochemical techniques, as well as adaptations to study crevice corrosion parameters and prevention strategies.
Keywords:
crevice corrosion, stainless steels, nickel alloys, test methods
References
1.
Standard Terminology and Acronyms Relating to Corrosion
, NACE/ASTM G193-12d (
West Conshohocken, PA
:
ASTM International
, approved December 1,
2012
),
2.
Kelly R. G.
Crevice Corrosion
,” in
ASM Handbook, Volume 13A: Corrosion: Fundamentals, Testing, and Protection
, ed. Cramer S. D. Covino B. S.
Metals Park, OH
:
ASM International
,
2003
), 242–247.
3.
Betts A. J. Boulton L. H.
Crevice Corrosion: Review of Mechanisms, Modelling, and Mitigation
,”
British Corrosion Journal
28
,
no. 4
(
1993
): 279–296.
4.
Gallagher P. Malpas R. E. Shone E. B.
Corrosion of Stainless Steels in Natural, Transported, and Artificial Seawaters
,”
British Corrosion Journal
23
,
no. 4
(
1988
): 229–233.
5.
Schlain D. Kenahan C. B.
The Role of Crevices in Decreasing the Passivity of Titanium in Certain Solutions
,”
Corrosion
12
,
no. 8
(
1956
): 422t–426t.
6.
Standish T. E. Yari M. Shoesmith D.W. Noel J. J.
Crevice Corrosion of Grade-2 Titanium in Saline Solutions at Different Temperatures and Oxygen Concentrations
,”
Journal of The Electrochemical Society
164
,
no. 13
(
2017
): C788–C795.
7.
Brown B. F.
Concept of the Occluded Corrosion Cell
,”
Corrosion
26
,
no. 8
(
1970
): 249–250.
8.
Laycock N. J. Stewart J. Newman R. C.
The Initiation of Crevice Corrosion in Stainless Steels
,”
Corrosion Science
39
,
no. 10–11
(
1997
): 1791–1809.
9.
Galvele J. R.
Tafel's Law in Pitting Corrosion and Crevice Corrosion Susceptibility
,”
Corrosion Science
47
,
no. 12
(
2005
): 3053–3067.
10.
Mears R. B. Evans U. R.
Corrosion at Contact with Glass
,”
Transactions of the Faraday Society
30
(
1934
): 417–423.
11.
Kearns J. R. Johnson M. J. Grubb J. F.
Accelerated Corrosion in Dissimilar Metal Crevices
” (paper presentation, Corrosion 1986,
NACE International
,
Houston, TX
,
1986
).
12.
Frankel G. S. Sridhar N.
Understanding Localized Corrosion
,”
Materials Today
11
,
no. 10
(
2008
): 38–44.
13.
Standard Specification for General Requirements for Flat-Rolled Stainless and Heat-Resisting Steel Plate, Sheet, and Strip
, ASTM A480/A480M-18a (
West Conshohocken, PA
:
ASTM International
, approved December 1,
2018
),
14.
Wilde B. E. Williams E.
The Use of Current/Voltage Curves for the Study of Localized Corrosion and Passivity Breakdown on Stainless Steels in chloride Media
,”
Electrochimica Acta
16
,
no. 11
(
1971
): 1971–1985.
15.
Uhlig H. H.
Pitting of Stainless Steels
,”
Transactions of AIME
140
(
1940
): 387–432.
16.
Galvele J. R.
Pitting Corrosion
,” in
Corrosion: Aqueous Processes and Passive Films
, ed. Scully J. C.
London, UK
:
Academic Press
,
1983
), 1–57.
17.
Rosenfeld I. L Danilov I. S.
Electrochemical Aspects of Pitting Corrosion
,”
Corrosion Science
7
,
no. 3
(
1967
): 129–142.
18.
Galvele J. R.
Transport Processes and the Mechanism of Pitting of Metals
,”
Journal of The Electrochemical Society
123
,
no. 4
(
1976
): 464–474.
19.
Galvele J. R.
Transport Processes in Passivity Breakdown—II. Full Hydrolysis of the Metal Ions
,”
Corrosion Science
21
,
no. 8
(
1981
): 551–579.
20.
Gravano S. M. Galvele J. R.
Transport Processes in Passivity Breakdown—III. Full Hydrolysis Plus Ion Migration Plus Buffers
,”
Corrosion Science
24
,
no. 6
(
1984
): 517–534.
21.
Oldfield J. W. Sutton W. H.
Crevice Corrosion of Stainless Steels: I. A Mathematical Model
,”
British Corrosion Journal
13
,
no. 1
(
1978
): 13–22.
22.
Oldfield J. W.
Test Techniques for Pitting and Crevice Corrosion Resistance of Stainless Steels and Nickel-Base Alloys in Chloride-Containing Environments
,”
International Materials Reviews
32
,
no. 1
(
1987
): 153–172.
23.
Carranza R. M. Rodriguez M. A. Rebak R. B.
Effect of Fluoride Ions on Crevice Corrosion and Passive Behavior of Alloy 22 in Hot Chloride Solutions
,”
Corrosion
63
,
no. 5
(
2007
): 480–490.
24.
Oldfield J. W. Sutton W. H.
Crevice Corrosion of Stainless Steels: II. Experimental Studies
,”
British Corrosion Journal
13
,
no. 3
(
1978
): 104–111.
25.
Alkire R. Siitari D.
Initiation of Crevice Corrosion. II—Mathematical Model for Aluminum in Sodium Chloride Solutions
,”
Journal of The Electrochemical Society
129
,
no. 3
(
1982
): 488–496.
26.
Walton J. C.
Mathematical Modeling of Mass Transport and Chemical Reaction in Crevice and Pitting Corrosion
,”
Corrosion Science
30
,
nos. 8–9
(
1990
): 915–928.
27.
Keitelman A. D. Gravano S. M. Galvele J. R.
Localized Acidification as the Cause of Passivity Breakdown of High Purity Zinc
,”
Corrosion Science
24
,
no. 6
(
1984
): 535–545.
28.
Rodriguez M. A.
Inhibition of Localized Corrosion in Chromium Containing Stainless Alloys
,”
Corrosion Reviews
30
,
nos. 1–2
(
2012
): 19–32.
29.
Newman R. C. Ajjawi M. A. A. Ezuber H. Turgoose S.
An Experimental Confirmation of the Pitting Potential Model of Galvele
,”
Corrosion Science
28
,
no. 5
(
1988
): 471–477.
30.
Hornus E. C. Rodriguez M. A. Carranza R. M. Rebak R. B.
Crevice Corrosion Repassivation of Ni-Cr-Mo Alloys by Cooling
,”
Corrosion
75
,
no. 6
(
2019
): 604–615.
31.
Srinivasan J.
Kelly
R. G.
, “On a Recent Quantitative Framework Examining the Critical Factors for Localized Corrosion and Its Impact on the Galvele Pit Stability Criterion
,”
Corrosion
73
,
no. 6
(
2017
): 613–633.
32.
Kappes M. A. Ortiz M. C. Iannuzzi M. Carranza R. M.
Use of the Critical Acidification Model to Estimate Critical Localized Corrosion Potentials of Duplex Stainless Steels
,”
Corrosion
73
,
no. 1
(
2017
): 31–40.
33.
Hornus E. C. Rodriguez M. A. Carranza R. M. Rebak R. B.
Comparative Study of the Crevice Corrosion Resistance of UNS S30400 and UNS S31600 Stainless Steels in the Context of Galvele's Model
,”
Corrosion
73
,
no. 1
(
2016
): 41–52.
34.
Galvele J. R. Lumsden J. B. Staehle R. W.
Effect of Molybdenum on the Pitting Potential of High Purity 18% Cr Ferritic Stainless Steels
,”
Journal of The Electrochemical Society
125
,
no. 8
(
1978
): 1204.
35.
Bocher F. Huang R. Scully J. R.
Prediction of Critical Crevice Potentials for Ni-Cr-Mo Alloys in Simulated Crevice Solutions as a Function of Molybdenum Content
,”
Corrosion
66
,
no. 5
(
2010
): 055002–055002–15.
36.
Martínez P. A. Rodriguez M. A. Hornus E. C. Carranza R. M. Rebak R. B.
Crevice Corrosion Resistance of Super-Austenitic and Super-Duplex Stainless Steels in Chloride Solutions
” (paper presentation, Corrosion 2015,
NACE International
,
Dallas, TX
, March 15–19,
2015
).
37.
G. C.Wood, “
The Role of Flaws in Breakdown of Passivity Leading to Pitting of Aluminum and Crevice Corrosion of Stainless Steel
,” in
Passivity of Metals
, ed. Frankenthal R. P. Sutton W. H.
Princeton, NJ
:
Electrochemical Society
,
1978
), 973–988.
38.
Stockert L. Boehni H.
Metastable Pitting Processes and Crevice Corrosion on Stainless Steels
,” in
Advances in Localized Corrosion
, NACE-9, ed. Isaacs H. S.
Houston, TX
:
NACE International
,
1987
), 467–473.
39.
Pickering H. W.
The Significance of the Local Electrode Potential within Pits, Crevices and Cracks
,”
Corrosion Science
29
,
no. 2
(
1989
): 325–341.
40.
Brossia C. S. Cragnolino G. A.
Effect of Environmental Variables on Localized Corrosion of Carbon Steel
,”
Corrosion
56
,
no. 5
(
2000
): 505–514.
41.
Suzuki T. Yamabe M. Kitamura Y.
Composition of Anolyte within Pit Anode of Austenitic Stainless-Steels in Chloride Solution
,”
Corrosion
29
,
no. 1
(
1973
): 18–22.
42.
Mankowski J. Szklarskasmialowska Z.
Studies on Accumulation of Chloride-Ions in Pits Growing during Anodic Polarization
,”
Corrosion Science
15
,
no. 8
(
1975
): 493–501.
43.
Li T. Scully J. R. Frankel G. S.
Localized Corrosion: Passive Film Breakdown vs. Pit Growth Stability: Part IV. The Role of Salt Film in Pit Growth: A Mathematical Framework
,”
Journal of The Electrochemical Society
166
,
no. 6
(
2019
): C115–C124.
44.
Li T. Scully J. R. Frankel G. S.
Localized Corrosion: Passive Film Breakdown vs. Pit Growth Stability: Part III. A Unifying Set of Principal Parameters and Criteria for Pit Stabilization and Salt Film Formation
,”
Journal of The Electrochemical Society
165
,
no. 11
(
2018
): C762–C770.
45.
Li T. Scully J. R. Frankel G. S.
Localized Corrosion: Passive Film Breakdown vs Pit Growth Stability: Part II. A Model for Critical Pitting Temperature
,”
Journal of the Electrochemical Society
165
,
no. 9
(
2018
): C484–C491.
46.
Frankel G. S. Li T. Scully J. R.
Perspective—Localized Corrosion: Passive Film Breakdown vs. Pit Growth Stability
,”
Journal of the Electrochemical Society
164
,
no. 4
(
2017
): C180–C181.
47.
Brigham R. J.
Temperature as a Crevice Corrosion Criterion
,”
Corrosion
30
,
no. 11
(
1974
): 396–398.
48.
Brigham R. J. Tozer E. W.
Temperature as a Pitting Criterion
,”
Corrosion
29
,
no. 1
(
1972
): 33–36.
49.
Kolts J. Sridhar N.
Temperature Effects in Localized Corrosion
,” in
Corrosion of Nickel-Base Alloys
, ed. Scarberry R. C.
Metals Park, OH
:
ASM International
,
1984
): 191–198.
50.
Qvarfort R.
Critical Pitting Temperature-Measurements of Stainless-Steels with an Improved Electrochemical Method
,”
Corrosion Science
29
,
no. 8
(
1989
): 987–993.
51.
Garner A.
Materials Selection for Bleached Pulp Washers
,”
Avesta Stainless Bulletin
1
,
no. 12
(
1982
): 3–18.
52.
Pickering H. W.
The Role of Electrode Potential Distribution in Corrosion Processes
,”
Materials Science and Engineering: A
198
,
nos. 1–2
(
1995
): 213–223.
53.
Frankel G. Thornton G. Street S. Rayment T. Williams D. Cook A. Davenport A.
Localised Corrosion: General Discussion
,”
Faraday Discussions
180
(
2015
): 381–414.
54.
Frankel G. S.
Pitting Corrosion of Metals: A Review of the Critical Factors
,”
Journal of the Electrochemical Society
145
,
no. 6
(
1998
): 2186–2198.
55.
Newman R. C.
2001 W. R. Whitney Award Lecture: Understanding the Corrosion of Stainless Steel
,”
Corrosion
57
,
no. 12
(
2001
): 1030–1041.
56.
Ijsseling F. P.
Electrochemical Methods in Crevice Corrosion Testing: Report Prepared for the European Federation of Corrosion Working Party ‘Physico-Chemical Testing Methods of Corrosion: Fundamentals and Applications,’
”
British Corrosion Journal
15
,
no. 2
(
1980
): 51–69.
57.
Kain R. M.
Electrochemical Measurement of the Crevice Corrosion Propagation Resistance of Stainless Steels: Effect of Environmental Variables and Alloy Content
,”
Materials Performance
23
,
no. 2
(
1984
): 24–30.
58.
Kain R. M.
Crevice Corrosion Testing in Natural Seawater. Significance and Use of Multiple Crevice Assemblies
,”
Journal of Testing and Evaluation
18
,
no. 5
(
1990
): 309–318.
59.
Kruger J. Rhyne K.
Current Understanding of Pitting and Crevice Corrosion and Its Application to Test Methods for Determining the Corrosion Susceptibility of Nuclear Waste Metallic Containers
,”
Nuclear and Chemical Waste Management
3
,
no. 4
(
1982
): 205–227.
60.
Anderson D. B.
Statistical Aspects of Crevice Corrosion in Seawater
,” in
Galvanic and Pitting Corrosion—Field and Laboratory Studies
, ed. Baboian R. France W. Rowe L. Rynewicz J.
West Conshohocken, PA
:
ASTM International
,
1976
), 231–242.
61.
Kain R. M.
Seawater Testing to Assess the Crevice Corrosion Resistance of Stainless Steel and Related Alloys
,” in
Proceedings of the 12th International Corrosion Congress
, Vol.
3B
(
Houston, TX
:
NACE International
,
1993
), 1889–1990.
62.
Kain R. M.
Evaluating Crevice Corrosion
,” in
ASM Handbook, Vol. 13A: Corrosion: Fundamentals, Testing, and Protection
, ed. Cramer S. D. Covino B. S.
Metals Park, OH
:
ASM International
,
2003
), 549–561.
63.
Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution
, ASTM G48-11 (
2015
) (
West Conshohocken, PA
:
ASTM International
, approved November 1,
2015
),
64.
Giordano C. M. Ortiz M. R. Rodriguez M. A. Rebak R. B.
Crevice Corrosion Testing Methods for Measuring Repassivation Potential of Alloy 22
,”
Corrosion Engineering, Science and Technology
46
,
no. 2
(
2013
): 129–133.
65.
Akashi M. Nakayama G. Fukuda T.
Initiation Criteria for Crevice Corrosion of Titanium Alloys Used for HLW Disposal Overpack
,” NACE 98185 (paper presentation, Corrosion 1998,
San Diego, CA
, March 22–27,
1998
).
66.
Shan X. Payer J. H.
Effect of Polymer and Ceramic Crevice Formers on the Crevice Corrosion of Ni-Cr-Mo Alloy 22
,”
Corrosion
66
,
no. 10
(
2010
): 105005–105005-14.
67.
Espelid B.
Objectives and Background
,” in
EFC-60: Methodology of Crevice Corrosion Testing for Stainless Steels in Natural and Treated Seawaters
, ed. Kivisäkk U. Espelid B. Féron D.
Wakefield, UK
:
Maney Publishing
,
2010
), 8–11.
68.
Kivisäkk U. Espelid B. Féron D.
EFC-60: Methodology of Crevice Corrosion Testing for Stainless Steels in Natural and Treated Seawaters
(
Wakefield, UK
:
Maney Publishing
,
2010
).
69.
Espelid B.
Crevice Formers for Specimens of Plate Material
,” in
EFC-60: Methodology of Crevice Corrosion Testing For Stainless Steels in Natural and Treated Seawaters
, ed. Kivisäkk U. Espelid B. Féron D.
Wakefield, UK
:
Maney Publishing
,
2010
), 17–20.
70.
Haugan E. B. Næss M. Rodriguez C. T. Johnsen R. Iannuzzi M.
Effect of Tungsten on the Pitting and Crevice Corrosion Resistance of Type 25Cr Super Duplex Stainless Steels
,”
Corrosion
73
,
no. 1
(
2017
): 53–67.
71.
Kivisäkk U. H.
Relation of Room Temperature Creep and Microhardness to Microstructure and HISC
,”
Materials Science and Engineering: A
527
,
nos. 29–30
(
2010
): 7684–7688.
72.
He X. Noël J. J. Shoesmith D. W.
Temperature Dependence of Crevice Corrosion Initiation on Titanium Grade-2
,”
Journal of the Electrochemical Society
149
,
no. 9
(
2002
): B440–B449.
73.
Jakupi P. Noël J. J. Shoesmith D. W.
Crevice Corrosion Initiation and Propagation on Alloy-22 under Galvanically-Coupled and Galvanostatic Conditions
,”
Corrosion Science
53
,
no. 10
(
2011
): 3122–3130.
74.
He X. Noël J. J. Shoesmith D. W.
Crevice Corrosion Damage Function for Grade-2 Titanium of Iron Content 0.078 wt% at 95°C
,”
Corrosion Science
47
,
no. 5
(
2005
): 1177–1195.
75.
Mathiesen T. Anderson A.
Challenges in Pre-Qualification Corrosion Testing of CRAs Based on ASTM G48
” (paper presentation, Corrosion 2014,
San Antonio, TX
, March 9–13,
2014
).
76.
Garner A.
Crevice Corrosion of Stainless-Steels in Sea-Water-Correlation of Field Data with Laboratory Ferric-Chloride Tests
,”
Corrosion
37
,
no. 3
(
1981
): 178–184.
77.
Tsujikawa S. Kudo K. Ogawa H.
A New Test for Predicting Pitting Corrosion Resistance of CRAs in Sour Environments
” (paper presentation, Corrosion 1988,
St. Louis, MO
,
1988
).
78.
Wensley D. A. Reid R. C. Dykstra H.
Corrosion of Nickel-Based Alloys in Chlorine Dioxide Washer Service
” (paper presentation, Corrosion 1990,
Houston, TX
,
1990
).
79.
DeForce B. S.
Comments on ASTM G48: Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution
” (paper presentation, Corrosion 2016,
NACE International
,
Vancouver, British Columbia, Canada
, March 6–10,
2016
).
80.
Skar J. I. Olsen S.
A Review of Materials Application Limits in NORSOK M-001 and ISO 21457
,”
Corrosion
73
,
no. 6
(
2017
): 655–665.
81.
Postlethwaite J.
Electrochemical Tests for Pitting and Crevice Corrosion Susceptibility
,”
Canadian Metallurgical Quarterly
22
,
no. 1
(
1983
): 133–141.
82.
Streicher M. A.
Development of Pitting Resistant Fe-Cr-Mo Alloys
,”
Corrosion
30
,
no. 3
(
1974
): 77–91.
83.
Lau P. Bernhardsson J.
Electrochemical Techniques for the Study of Pitting and Crevice Corrosion Resistance of Stainless Steels
,” in
Electrochemical Techniques for Corrosion Engineering
, ed. Baboian R.
Houston, TX
:
NACE International
,
1977
), 281–286.
84.
Ortiz M. Rincón Rodriguez M. A. Carranza R. M. Rebak R. B.
Determination of the Crevice Corrosion Stabilization and Repassivation Potentials of a Corrosion-Resistant Alloy
,”
Corrosion
66
,
no. 10
(
2010
): 105002-1–12.
85.
Garner A.
Thiosulfate Corrosion in Paper-Machine White Water
,”
Corrosion
41
,
no. 10
(
1985
): 587–591.
86.
Renner M. Heubner U. Rockel M. B. Wallis D.-I. E.
Temperature as a Pitting and Crevice Corrosion Criterion in the FeCI3 Test
,”
Werkstoffe und Korrosion
37
,
no. 1
(
1986
): 183–190.
87.
Malik A. U. Siddiqi N. A. Ahmad S. Andijani I. N.
The Effect of Dominant Alloy Additions on the Corrosion Behavior of Some Conventional and High-Alloy Stainless-Steels in Seawater
,”
Corrosion Science
37
,
no. 10
(
1995
): 1521–1535.
88.
Lorentz K. Medawar G.
Über das Korrosionsverhalten austenitischer Chrom-Nickel-(Molybd än-) Stähle mit und ohne Stickstoffzusatz unter besonderer Berücksichtigung ihrer Beanspruchbarkeit in Chloridhaltigen Lösungen
,”
Tyssenforschung
1
,
no. 3
(
1969
): 97–108.
89.
Jargelius-Pettersson R. F. A.
Application of the Pitting Resistance Equivalent Concept to Some Highly Alloyed Austenitic Stainless Steels
,”
Corrosion
54
,
no. 2
(
1998
): 162–168.
90.
Materials Selection
, NORSOK M-001 (
Lysaker, Norway
:
Standards Norway
,
2014
).
91.
Petroleum, Petrochemical and Natural Gas Industries—Materials Selection and Corrosion Control for Oil and Gas Production Systems
, ISO 21457:2010 (
Geneva, Switzerland
:
International Organization for Standardization
,
2010
).
92.
Klapper H. S. Zadorozne N. S. Rebak R. B.
Localized Corrosion Characteristics of Nickel Alloys: A Review
,”
Acta Metallurgica Sinica (English Letters)
30
,
no. 4
(
2017
): 296–305.
93.
Brigham R. J.
Pitting and Crevice Corrosion Resistance of 18% Cr Stainless Steels
,”
Materials Performance
13
,
no. 11
(
1974
): 29–31.
94.
Qvarfort, R. R.
New Electrochemical Cell for Pitting Corrosion Testing
,”
Corrosion Science
28
,
no. 2
(
1988
): 135–140.
95.
Dean S. W.
Research Report on Interlaboratory Test Program Results for ASTM G48 Standard Test Method for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of the Ferric Chloride Solution: Methods E and F
(
West Conshohocken, PA
:
ASTM International
,
2002
).
96.
Standard Practice for the Preparation of Substitute Ocean Water
, ASTM D1141-98 (
2013
) (
West Conshohocken, PA
:
ASTM International
, approved January 1,
2013
),
97.
Salvago G. Magagnin L.
Biofilm Effect on the Cathodic and Anodic Processes on Stainless Steel in Seawater Near the Corrosion Potential: Part 1—Corrosion Potential
,”
Corrosion
57
,
no. 8
(
2001
): 680–692.
98.
Salvago G. Magagnin L.
Biofilm Effect on the Cathodic and Anodic Processes on Stainless Steel in Seawater Near the Corrosion Potential—Part 2: Oxygen Reduction on Passive Metal
,”
Corrosion
57
,
no. 9
(
2001
): 759–767.
99.
Machuca L. L. Bailey S. I. Gubner R.
Systematic Study of the Corrosion Properties of Selected High-Resistance Alloys in Natural Seawater
,”
Corrosion Science
64
,
no. 1
(
2012
): 8–16.
100.
Steinsmo U. Rogne T. Drugli J.
Aspects of Testing and Selecting Stainless Steels for Seawater Applications
,”
Corrosion
53
,
no. 12
(
1997
): 955–964.
101.
Steinsmo U. Rogne T. Drugli J. M. Gartland P. O.
Critical Crevice Temperature for High-Alloyed Stainless Steels in Chlorinated Seawater Applications
,”
Corrosion
53
,
no. 1
(
1997
): 26–32.
102.
Féron D. l'Hostis V. Roy M.
Formulation of New Synthetic Seawater for Aerobic Environment
,” in
EFC-60: Methodology of Crevice Corrosion Testing for Stainless Steels in Natural and Treated Seawaters
, ed. Kivisäkk U. Espelid B. Féron D.
Wakefield, UK
:
Maney Publishing
,
2010
), 30–43.
103.
Kivisäkk U. Espelid B. Féron D.
ISO Proposal for Synthetic Biochemical Seawater
,” in
EFC-60: Methodology of Crevice Corrosion Testing for Stainless Steels in Natural and Treated Seawaters
(
Wakefield, UK
:
Maney Publishing
,
2010
), 105–109.
104.
Dunn D. S. Cragnolino G. A. Sridhar N.
An Electrochemical Approach to Predicting Long-Term Localized Corrosion of Corrosion-Resistant High-Level Waste Container Materials
,”
Corrosion
56
,
no. 1
(
2000
): 90–104.
105.
Torres C. Johnson R. Østvold H. Bernås M. Iannuzzi M.
Effect of W on Phase Transformation Kinetics and its Correlation with Localized Corrosion Resistance for UNS S39274
” (paper presentation, Corrosion 2019,
NACE International
,
Houston, TX
, March 24–28,
2019
).
106.
Standard Test Methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic/Ferritic Stainless Steels
, ASTM A923-14 (
West Conshohocken, PA
:
ASTM International
, approved March 1,
2014
),
107.
Iannuzzi M. Qvale A. H. Fjeldly A.
Rapid Non-Destructive Evaluation of the Degree of Sensitization in Stainless Steels and Nickel Based Alloys
(
West Conshohocken, PA
:
ASTM International
,
2019
).
108.
Lee T.
A Method for Quantifying the Initiation and Propagation Stages of Crevice Corrosion
,” in
Electrochemical Corrosion Testing
, ed. Mansfeld F. Bertocci U.
West Conshohocken, PA
:
ASTM International
,
1981
), 43–68.
109.
Iannuzzi M. Mendez C. Avila-Gray L. Maio G. Rincon H.
Determination of the Critical Pitting Temperature of Martensitic and Supermartensitic Stainless Steels in Simulated Sour Environments Using Electrochemical Noise Analysis
,”
Corrosion
66
,
no. 4
(
2010
): 411–418.
110.
Kain R. M. Lee T. S.
Recent Developments in Test Methods for Investigating Crevice Corrosion
,” in
Laboratory Corrosion Tests and Standards
, ed. Haynes G. Baboian R.
West Conshohocken, PA
:
ASTM International
,
1985
), 299–323.
111.
Lillard R. S. Scully J. R.
Modeling of the Factors Contributing to the Initiation and Propagation of the Crevice Corrosion of Alloy 625
,”
Journal of The Electrochemical Society
141
,
no. 11
(
1994
): 3006–3015.
112.
Zhang H.-J. Dexter S. C.
Effect of Biofilms on Crevice Corrosion of Stainless Steels in Coastal Seawater
,”
Corrosion
51
,
no. 1
(
1995
): 56–66.
113.
Martin F. J. Lucas K. E. Hogan E. A.
Experimental Procedure for Crevice Corrosion Studies of Ni–Cr–Mo Alloys in Natural Seawater
,”
Review of Scientific Instruments
73
,
no. 3
(
2002
): 1273–1276.
114.
Standard Guide for Conducting and Evaluating Galvanic Corrosion Tests in Electrolytes
, ASTM G71-81 (
2019
) (
West Conshohocken, PA
:
ASTM International
, approved May 1,
2019
),
115.
Salinas-Bravo V. M. Newman R. C.
An Alternative Method to Determine Critical Pitting Temperature of Stainless Steels in Ferric Chloride Solution
,”
Corrosion Science
36
,
no. 1
(
1994
): 67–77.
116.
Garfias-Mesias L. F. Sykes J. M.
Effect of Copper on Active Dissolution and Pitting Corrosion of 25% Cr Duplex Stainless Steels
,”
Corrosion
54
,
no. 1
(
1998
): 40–47.
117.
Garfias-Mesias L. F. Sykes J. M.
Metastable Pitting in 25 Cr Duplex Stainless Steel
,”
Corrosion Science
41
,
no. 5
(
1999
): 959–987.
118.
Garfias-Mesias L. F. Sykes J. M. Tuck C. D. S.
The Effect of Phase Compositions on the Pitting Corrosion of 25 Cr Duplex Stainless Steel in Chloride Solutions
,”
Corrosion Science
38
,
no. 8
(
1996
): 1319–1330.
119.
Tsaprailis T. Kovacs W. Tuggle J. Garfias-Mesias L. F.
Corrosion Resistance of Stainless Steels Exposed to Aggressive Environments with Particles and Water
” (paper presentation, Corrosion 2009,
NACE International
,
Atlanta, GA
, March 22–26,
2009
).
120.
Cottis R. A.
Interpretation of Electrochemical Noise Data
,”
Corrosion
57
,
no. 3
(
2001
): 265–285.
121.
Standard Guide for Electrochemical Noise Measurement
, ASTM G199-09 (2020)e1 (
West Conshohocken, PA
:
ASTM International
, approved November 1,
2020
),
122.
Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements
, ASTM G5-94(2011)e1, (
West Conshohocken, PA
:
ASTM International
, approved November 15,
2011
),
123.
Wilde B. E.
A Critical Appraisal of Some Popular Laboratory Electrochemical Tests for Predicting the Localized Corrosion Resistance of Stainless Alloys in Sea Water
,”
Corrosion
28
,
no. 8
(
1972
): 283–291.
124.
Wilde B. E.
Adaptation of Linear Polarization Techniques for In-Situ Corrosion Measurements in Water Cooled Nuclear Reactor Environments
,”
Corrosion
23
,
no. 12
(
1967
): 379–384.
125.
Sridhar N. Cragnolino G. A.
Applicability of Repassivation Potential for Long-Term Prediction of Localized Corrosion of Alloy 825 and Type 316L Stainless Steel
,”
Corrosion
49
,
no. 11
(
1993
): 885–894.
126.
Park J.-J. Pyun S.-I. Lee W.-J. Kim H.-P.
Effect of Bicarbonate Ion Additives on Pitting Corrosion of Type 316L Stainless Steel in Aqueous 0.5 M Sodium Chloride Solution
,”
Corrosion
55
,
no. 4
(
1999
): 380–387.
127.
Aoyama T. Sugawara Y. Muto I. Hara N.
In Situ Monitoring of Crevice Corrosion Morphology of Type 316L Stainless Steel and Repassivation Behavior Induced by Sulfate Ions
,”
Corrosion Science
127
(
2017
): 131–140.
128.
Burstein G. T. Moloney J. J.
Cyclic Thermammetry
,”
Electrochemistry Communications
6
,
no. 10
(
2004
): 1037–1041.
129.
Clerc C. O. Jedwab M. R. Mayer D. W. Thompson P. J. Stinson J. S.
Assessment of Wrought ASTM F1058 Cobalt Alloy Properties for Permanent Surgical Implants
,”
Journal Biomedical Material Research
38
,
no. 3
(
1997
): 229–234.
130.
Rondelli G. Vicentini B. Cigada A.
Localised Corrosion Tests on Austenitic Stainless Steels for Biomedical Applications
,”
British Corrosion Journal
32
,
no. 3
(
1997
): 193–196.
131.
Rondelli G. Vicentini B.
Localized Corrosion Behaviour in Simulated Human Body Fluids of Commercial Ni-Ti Orthodontic Wires
,”
Biomaterials
20
,
no. 8
(
1999
): 785–792.
132.
Tsujikawa S.
Critical Depth for Initiation of Growing Crevice Corrosion
,”
Critical Factors in Localized Corrosion
, ed. Frankel G. S. Newman R.
Pennington, NJ
:
The Electrochemical Society
,
1992
), 378–388.
133.
Tsujikawa S. Okayama S.
Repassivation Method to Determine Critical Conditions in Terms of Electrode Potential, Temperature and NaCl Concentration to Predict Crevice Corrosion Resistance of Stainless Steels
,”
Corrosion Science
31
,
no. 1
(
1990
): 441–446.
134.
Standard Test Method for Determining the Crevice Repassivation Potential of Corrosion-Resistant Alloys Using a Potentiodynamic-Galvanostatic-Potentiostatic Technique
, ASTM G192-08 (
2014
) (
West Conshohocken, PA
:
ASTM International
, approved November 1,
2014
),
135.
Tsujikawa S. Hisamatsu Y.
On the Repassivation Potential for Crevice Corrosion
,”
Corrosion Engineering
29
,
no. 1
(
1980
): 37–40.
136.
Evans K. J. Yilmaz A. Day S. D. Wong L. L. Estill J. C. Rebak R. B.
Using Electrochemical Methods to Determine Alloy 22's Crevice Corrosion Repassivation Potential
,”
Journal of the Minerals, Metals, and Materials Society
57
(
2005
): 56–61.
137.
Mishra A. K. Frankel G. S.
Crevice Corrosion Repassivation of Alloy 22 in Aggressive Environments
,”
Corrosion
64
,
no. 11
(
2008
): 836–844.
138.
Evans K. Chawla S. Sherer K. M. Gerst J. Beavers J. A. Sridhar N. Boomer K. D.
The Use of ASTM G192 (Tsujikawa-Hisamatsu Electrochemical Method) to Evaluate the Susceptibility of Hanford Tank Steels to Pitting Corrosion
” (paper presentation, Corrosion 2016,
NACE International
,
Vancouver, British Columbia, Canada
, March 6–10,
2016
).
139.
Rodríguez M. A. Carranza R. M. Rebak R. B.
Effect of Potential on Crevice Corrosion Kinetics of Alloy 22
,”
Corrosion
66
,
no. 1
(
2010
): 015007-015007–1-14.
140.
Mishra A. K. Shoesmith D. W.
Effect of Alloying Elements on Crevice Corrosion Inhibition of Nickel-Chromium-Molybdenum-Tungsten Alloys under Aggressive Conditions: An Electrochemical Study
,”
Corrosion
70
,
no. 7
(
2014
): 721–730.
141.
Hornus E. C. Giordana C. M. Rodriguez M. A. Carranza R. M. Rebak R. B.
Effect of Temperature on the Crevice Corrosion of Nickel Alloys Containing Chromium and Molybdenum
,”
Journal of The Electrochemical Society
162
,
no. 3
(
2014
): C105–C113.
142.
Rincón-Ortíz M. Rodríguez M. A. Carranza R. M. Rebak R. B.
Determination of the Crevice Corrosion Stabilization and Repassivation Potentials of a Corrosion-Resistant Alloy
,”
Corrosion
66
,
no. 10
(
2010
): 105002-105002–1-12.
143.
Okayama S. Tsujikawa S. Kikuchi K.
The Effect of Alloying Elements on Depassivation pH for Stainless Steels
,”
Corrosion Engineering (Jpn.)
36
,
no. 11
(
1987
): 702–709.
This content is only available via PDF.
You do not currently have access to this chapter.
Sign In
Sign In Or Register For Account
Sign in via your Institution
Email alerts
New eBook Alert
Close Modal
Related Chapters
Orthopedic Implant Retrieval and Analysis Study
Corrosion and Degradation of Implant Materials
Localized Corrosion Susceptibility of Work-Hardened Stainless Steels in a Physiological Saline Solution
Corrosion and Degradation of Implant Materials
Nuclear Components Operating in the Creep Regime
Analysis of ASME Boiler, Pressure Vessel, and Nuclear Components in the Creep Range
Effect of Heat Treatment on Liquid Metal-Induced Cracking of Austenitic Alloys
Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications
Related Articles
Single Entry Tunneler (SET) for Hemodialysis Graft Procedures
J. Med. Devices (June,2011)
Ultrasonic Cavitation Peening of Stainless Steel and Nickel Alloy
J. Manuf. Sci. Eng (February,2014)
Condenser Tube Materials for Seawater Service
J. Eng. Power (October,1966)
Related Proceedings Papers
Multi-Objective Optimization of a Bi-Metal High Temperature Recuperator for Application in Concentrating Solar Power
ES2022
Characterization of Materials Fabricated by Additive Manufacturing Method Using Line Focused Ultrasonic Transducer
IMECE2016
Ultrasonic Cavitation Peening of Stainless Steel and Nickel Alloy
MSEC2013